simLists
object to a data.table
R/as.data.table.R
as.data.table.simLists.Rd
This is particularly useful to build plots using the tidyverse, e.g., ggplot2.
# S3 method for simLists as.data.table(x, vals, objectsFromSim = NULL, objectsFromOutputs = NULL, ...)
x | An R object. |
---|---|
vals | A (named) list of object names to extract from each
|
objectsFromSim | Character vector of objects to extract from the simLists. If
omitted, it will extract all objects from each simList in order to calculate the
|
objectsFromOutputs | List of (named) character vectors of objects to load from the
|
... | Additional arguments. Currently unused. |
See examples.
if (FALSE) { library(SpaDES.core) tmpdir <- file.path(tempdir(), "examples") # Make 3 simLists -- set up scenarios endTime <- 2 # Example of changing parameter values # Make 3 simLists with some differences between them mySim <- lapply(c(10, 20, 30), function(nFires) { simInit( times = list(start = 0.0, end = endTime, timeunit = "year"), params = list( .globals = list(stackName = "landscape", burnStats = "nPixelsBurned"), # Turn off interactive plotting fireSpread = list(.plotInitialTime = NA, spreadprob = c(0.2), nFires = c(10)), caribouMovement = list(.plotInitialTime = NA), randomLandscapes = list(.plotInitialTime = NA, .useCache = "init") ), modules = list("randomLandscapes", "fireSpread", "caribouMovement"), paths = list(modulePath = system.file("sampleModules", package = "SpaDES.core"), outputPath = tmpdir), # Save final state of landscape and caribou outputs = data.frame( objectName = c(rep("landscape", endTime), "caribou", "caribou"), saveTimes = c(seq_len(endTime), unique(c(ceiling(endTime / 2), endTime))), stringsAsFactors = FALSE ) ) }) planTypes <- c("sequential") # try others! ?future::plan sims <- experiment2(sim1 = mySim[[1]], sim2 = mySim[[2]], sim3 = mySim[[3]], replicates = 3) # Try pulling out values from simulation experiments # 2 variables df1 <- as.data.table(sims, vals = c("nPixelsBurned", NCaribou = quote(length(caribou$x1)))) # Now use objects that were saved to disk at different times during spades call df1 <- as.data.table(sims, vals = c("nPixelsBurned", NCaribou = quote(length(caribou$x1))), objectsFromOutputs = list(nPixelsBurned = NA, NCaribou = "caribou")) # now calculate 4 different values, some from data saved at different times # Define new function -- this calculates perimeter to area ratio fn <- quote({ landscape$Fires[landscape$Fires[] == 0] <- NA; a <- boundaries(landscape$Fires, type = "inner"); a[landscape$Fires[] > 0 & a[] == 1] <- landscape$Fires[landscape$Fires[] > 0 & a[] == 1]; peri <- table(a[]); area <- table(landscape$Fires[]); keep <- match(names(area),names(peri)); mean(peri[keep]/area) }) df1 <- as.data.table(sims, vals = c("nPixelsBurned", perimToArea = fn, meanFireSize = quote(mean(table(landscape$Fires[])[-1])), caribouPerHaFire = quote({ NROW(caribou) / mean(table(landscape$Fires[])[-1]) })), objectsFromOutputs = list(NA, c("landscape"), c("landscape"), c("landscape", "caribou")), objectsFromSim = "nPixelsBurned") if (interactive()) { # with an unevaluated string library(ggplot2) p <- lapply(unique(df1$vals), function(var) { ggplot(df1[vals == var,], aes(x = saveTime, y = value, group = simList, color = simList)) + stat_summary(geom = "point", fun.y = mean) + stat_summary(geom = "line", fun.y = mean) + stat_summary(geom = "errorbar", fun.data = mean_se, width = 0.2) + ylab(var) }) # Arrange all 4 -- could use gridExtra::grid.arrange -- easier pushViewport(viewport(layout = grid.layout(2, 2))) vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y) print(p[[1]], vp = vplayout(1, 1)) print(p[[2]], vp = vplayout(1, 2)) print(p[[3]], vp = vplayout(2, 1)) print(p[[4]], vp = vplayout(2, 2)) } }